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TUE STABILITY OF RESULTS: SOME EXAMPLES OF THE EFFECTS

OF SCALE TRANSFORMATIONS

13.e rnt Larsson

1
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Larsson, B. The stability of results: Some examples of the effects of
scale transformations. Didakometry (Malmo, Sweden: School of
Education), No. 42, 1974.
When the admissible class of transformations for a scale; defined to
measure a certain concept, is broader than the class of transformations
for which a given index-of result is invariant, the question of the
stability of results arises. In such situations one may be interested
in finding the range of the index or perhaps that transformation which
maximizes or minimizes the index. The technique used here to
obtain these objects is to express a,variable with many categories
as a weighted sum of its binary variables; the weights being the scale
value s.

This report gives some simple examples of stability for one -factor

and 2 x 2 factorial analysis of variance, reliability and correlations-.
The findings are very different: from super stability (no transformation
whatsoever can change the result) to almost total instability. This is
followed by a discussion of applications to multivariate analysis, and
by some final remarks. It can be added that the technique can also
be utilied for scaling variables to obtain a best fit to mathematical
models other than those involved in usual statistical analysis.

Keywords: Measurement, transformations, scales

Paper read at the conference with Society of Multivariate
Experimental Psychology in Frankfurt/M. in September 1974.
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INTRODUCTION

Scales, used in educational research are, as a rule, loosely defined.

The most common numerical coding of the possible outcomes of a

measurement is successive integers. However, there is seldom anything

in the educational measurement procedure which prescribes this rather

than any other coding. Educational researchers will in most cases not

have any fundamental objection to exchanging this coding for a monotonic

transformation of it._
On the other hand, many statistical methods (or other mathematical

__models used in educational research) are only invariant e. g. up to linear
transformations. The question is how stable are results, described-by these '

methods, when monotonic transformations constitute the class of acceptable

codings? High stability admits conclusions with great generality. It may

also be of interest to choose that scale which, under given restrictions,

maximizes (or minimizes) a certain index of result.
The techniques used for investigating the stability are based on a general

principle. By using binary coding, each many-valued variable can be

expressed as a weighted sum of its binary variables, where the weights

are the scale values. This implies that almost all analysis will be multivaria-

te, e.g. a certain type of analysis of variance (ANOVA) is transferred to the

corresponding discriminant analysis, modified due to some restriction of

transformations.
This report gives some simple examples of the stability of results for

some statistical methods, viz. one factor and 2 x2 factcrial ANOVA with

different cell samples, reliability estimates from a one factor ANOVA with

repeated measures design, and product-moment correlations. The report

also discusses, though without examples, some possible extensions to
multivariate methods. With one exception, the examples only treat three

or four-valued variables, which make it possible to visualize the results

on graphs. The data are, again with one exception, artificial, constructed

to constitute a first test of some optimization routines.

It can be added that the binary coding technique is not limited to

statistical methods. We can use it to code variables, under given restrictions,

to obtain a best fit to a certain mathematical model (described by a goodness-

of-fit criterion chosen). If this optimal fit is bad, the conclusion that the

model is unsuitable will be quite general. For instance, we may code a

variable to obtain a certain distribution function, code two variables to obtain
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a given linear relation, or code a learning variable to be a specified function
of the number of trials.

METHOD

In this section we will first describe the binary coding techn.que and
relations between and within many-valued variables and binary variables.
Some comments are then made on the general forms of the indices of result
used in the examples, followed by a short discussion of the concept of
stability and some simulations.

Binary coding

The idea of binary coding is not new, Some information about it is given
_in Larsson (1973) and Bradley et al. (1962) Ilse it in a modified form.

The description will here be sufficiently general to cover also most of the
discussion concerning multivariatelysis.

Let x.1 , i = 1, , p, be a many-valued variable with k. '+ 1 categories.
There are nig measurement objects characterized by category g, -which
has the numerical code aig' 1, ,g = 0, k1 The categories are often
ordered and in such cases g indicates the order. In the sequel we only

,
regard a certain standardized coding having ai0 = 0 and a = 1.

The binary variable uig is now defined as

ui =g

r.

L

if x. = a.ig

if x. aig
g= , , k. .

The vector ox arithmetic means of the biriary variables is

n1
1

= ig/ n.j, and the covariance matrix is S.. = b
ghn. ign n. /n2

ki

where egh is Kronecker' s S and n = n. . (We assume that n has the
g=0 ig

same value, independent of i .) Likewise, the covariance matrix between
binary variables, corresponding to two x-variables, becomes

S. = g(i)h(j) ig jh/n - n n /n I. Here h and j are alternative indices of g and

i, respectively, and ng(oh(j) is the number of o cts which simultaneously

belong to category g of x.
1

and category h of x..
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As a parenthesis, we may mention that the nonnumerical information

of
'

x.
1

e.g. that contained in Sii, can be used by analogue to multivariate
statistics. The determinant of a covariance matrix is there one index of

ki k. +1
'generalized variance' aridIS. I = Tin. /n may be used as a measureg=0 lg
of the nonnumerical 'variance' of xi. It is related to information theo. retical

measures of uncertainty, see e.g. Fhaner (1966).

For cases dealt with here, binary coding may be said to split up the

information of x. in a nonnumerical part, u. = tu 1+, and a_numericalp-aff,.

a = - a We obtain the-fundarrreritarioimula
_

1 ig

x = a. u. .
1 1

The arithmetic mean of x.
1

becomes a i me..
1 iand its variance ai.ii i'S a while

. ,

the covariance of x. and x. can be written as a' S. a .
1 J i ij j

Let us now consider all x-variables simultaneously and define

x = lx.1, in = 4-a!rm .1, u = ju2), mur_fm.'ianciS = iS ..i. We also
r x - 1 1

. r, uu
need D, a block diagonal matrix having a.1 on the principal diagonal and

I

thus of order K x p. where K = ti ki. Hence

x = D'u

It follows from formula 3 that mx = D u
and the covariance matrix

of x will be S = D'S D.uu
In multivariate statistical analysis it is rather common to define

new variables as a weighted sum of other variables, e.g. z =

We may take t = D c, meaning that z = t'u with mz = frau and sz
2

= t, Suu t.
_____----

Thus, the situation is the same as for one x-variable. (But see next section

about formulations of restriction for monotonic transformations.)

Indices of result

Almost all indices ofzre suit preaented in this report has the following

form for one dependent variable x (we now skip i and j):

a'ra
Q = a a
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Both matrices are real and symmetric, and they can be weighted sums

of other, more basic matrices. For all Q here, G will be p9sitive

definite. There are, however, cases where G may be positive semidefinite,

e. g. if Q is a F ratio for a random factor. In many cases F will be

positive semidefinite (or definite) but we will also meet exceptions

from this (F is indefinite). I think_that.exceptiont are rather common in

variance components, where negative values are possible.

In some applications there may be other properties, e. g. each diagonal

element of F cannot exceed the corresponding element of G.

For standardized a , but no other restrictions, we can seek for an

optimal scale in the whole (k-1) -dimensional real space-of a and thus

have an eigenvalue problem as e. g. for common discriminant analysis.

The only restriction taken up here is that of monotonic transformations.

In most cases this will mean 0 < al < a2
< < ak-1 < 1. .The admissible

a space is then a peculiarly cut 'piece of cheese' in the principle quadrant.

Under certain circumstances, however, monotonic transformations can only.

involveblockwise ranking, for instance 0 S (ai,a2) < a3 < 1, with no

ranking within blocks. Such a case will appear in this report. Also, for

many x-variables the monotonic restriction implies that the t vector of the

last section will only be ranked within blocks (c.a.) but not between blocks.

I believe that it is not unusual for optimal a to lie'ciri the boundary of

the admissible space. In particular, corner solutions seem to be

'favoured' for min Q, as far as my brief experience hitherto shows,.that

is, x is dichotomized. Some support for this belief concerning r..ax Q is

given by Bradley et al. (1962). They seem to have analysed rather a lot

of data (one factor ANOVA) and often found boundary solutions, at least

when k is large.
The index-Q-accordin-g-toformula 4 is not relevant for one of the

examples concerning a productMoment correlation. The problem is then

simultaneously to code two x-variables and Q will have the general form.
2

(aj.F13 ..a . )3

a! G.. a .
1
a'. Hj.. a .

1 11 j j

For the (squared) correlation, the matrices are different covariance

matrices (between and within u. and u .).
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Stability

For a certain Q-index and given restrictions, data are more stable,
or more insensitive to admissible transformations, the lesser the
difference between the maximum_and-minirtium of Q. We will not use
any special- stability measure in this report but it can be needed for
certain comparisons, There are Q-indices, the range of which vary
(e.g. as a function of n), and different Q-indices may have quite different
ranges. For indices with finite ranges it is reasonable to relate the
actual range (max Q - min Q for certain data) to the maximally possible
range (without restrictions), e.g. define stability as 1 - (max Q - min Q

fo'r certain data) /(maximal range).
Total instability is obtained for data which have maximal"Q---range.

Som examples have data which are almost in this state. The oppOsite

will be coined superstability, which means that no transformation
monotonic or not - can change Q. For fof,rriulat this implies that
F is proportional to G. We will give two examples of this remarkable
property. It is finally obvious, for a definition of stability as of the last
paragraph, that for two different restrictions, described by a e Ri and

a E R2 with R = R2' the stability cannot be.greater for F,.2 than for R1.

Simulations

Two types of simulations will be commented upon here, but only the

first type has yet been performed. The type I subroutine produces
rectangularly distributed random scale. values which are ranked and

exploited for the calculation of Q according to formula 4 (F and G are
fixed and supplied by the main program). The generation of a is repeated

an arbitrarily number of times, thus giving a whole distribution of Q.
It is of special interest to know the relative position of Q for equally
spaced scale values. (You may here speak about a kind of inference, with

the generated distribution as a sample distribution over scales.) The
type I runs will also serve as a check of the optimization routines: if
the simulated distribution contains more extreme values than those from
the optimization routines, an error is indicated.

The purpose with type II simulations is to get a comprehension of the

variation of the extreme values with repeated samples of measurement
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objects from the same popuration. We will construct some convenient
populations, take,a number of samples and apply the optimization
subroutines. In this way we get an estimate of the common kind of
sample distribution of min Q and max Q, which is, no doubt, important.
However, this type of analysis seems to be rather expensive and cannot
always be made. I assume that some priority must be made: it may be
necessary to elucidate this problem by only running type II simulations
for the mos*: -ommon Q-indices.

SOME EXAMPLES

Most of the following examples are illustrated both with tables of
basic data and with graphs on Q as a function of a. While the tables
are presented on successive text pages, the graphs are collected in an
appendix. The matrices F. G and H are not shown but they are easily
retrieved from the appendix, where the functions are also given.

Two simple ANOVA designs

Factorial ANOVA with different cell samples has been studied by some
authors (not all referred to here but see Meredith, Fredriksen &
McLaughlin, 1974, for some further references) aiming at finding scales
which optimize a certain effect- Tukey (1950) is one of thi first to
solve, at least partially, this problem. He maximizes the F ratio but
his method does not guarantee rank invariance. Box & Cox (1964) give

this problem a more complete solution, but they restrict themselves to
certain families of functions. In that respect the method described by
Kruskal (1965) and Kruskal & Carmone (1969) is more general: it
considers all functions within the class of monotonic transformations.
This is also the case with the method proposed by Bradley et al. (1962)

and in this report.

One factor ANOVA
For a univariate one factor ANOVA with different samples, the total

sum of squares is divided up into the sum of squares between groups
(samples) and within groups. The corresponding cross product matrices
in the multivariate case will be denoted T, B and W, respectively. We
generate these matrices, of order k x k, by binary coding of a dependent

9



t.

8

i

variable with k_+ 1- categories. The Q index used here, for given scale

values a , will be the ratio of the sum of squares between groups to the

total sum of squaies. In accordance with formula 4 this implies that

F = B and G = T.
The first example is taken from Larsson (1973). As is clear from

table 1, the factor has three levels and the dependent variable three
categories. (The numbering of the latter only indicates order.) Figure 1

of the appendix shows Q as a function of a .
.-,.

Table I-. Basic data of example 1

3

2

1 .

E

Al A2 A3 E

1 0

1...4-,

129

30 I

10

29

1

40

10

20

0

39
I

20

50

30

100

The two eigenvalues become 0.907'9 and 0.0069, of which the largest

one happens to be gene ated by an admissible scale under the restriction

of monotonic transfor ations. The minimum of Q with this restriction

is 0.1146. It can be added that the scale (0.0', 0.5, 1.0) gives a Q valiae of

0.6610. We thus have a very instable situation, where different monotonic

transformations may generate quite different descriptions: the proportions

of the total variance explained by group differences may differ as much

as 79 To. Notice also that the dichotomized scale (0.0, 1.0, 1.0) is more

sensitive to group discrimination than (0.0, 0.5, 1. 0). I believe that

this can be a rather-general finding: more scale values do not guarantee

higher Q values.
--The basic data of the next example are shown in table 2. It consists

of two parts, each with two levels and a three-valued dependent variable.

Figure 2 of the appendix gives both curves (Q as a function of a).

Table 2. Basic data of example 2
Al A2 Z Al A2 Z

3 10 25 35 0 30 30

2 20 10 30 40 0 40

1 10 25 35 0 30 30

Z 40 60 100 40 60 100

10
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For both parts, data are constructed so that the scale (0.0, 0.5, 1.0)
gives a Q value of 0.0000. The left part has eigenvalues of 0.1270 and
0.0000 and the maximal Q value for monotonic transfbrrnations is
0.0293. Th,e right part, which involves extremely different-distributions,
has eigefivalues of 1.0000 and 0.0000, while the restricted Q maximum
is 0.2857. Thus, a Q valueof zero for equally spaced scale values can
be increased, though very dissimilar distributions seem to be needed for
a substantial change. If the distributions have exactly the same form,
Q will be superstable (will be zero independent of a).

2 x 2 factorial ANOVA
For this case the crossproduct matrix between cells will be partioned
into three matrices: BA for the main effect of factor A, BB for the main
effect of factor B, aria BAB for the interaction effect. We use the same
Q index as for one factor ANOVA, which means that the numerator matrix
of formula 4 if one of the B matrices, while G is still equal to.T. When,we
describe an effect by this Q value, it is evident that the effect can be totally
eliminated in the numerator matrix is positive semidefinite. This
property is normally obtained when the degree of freedom. of the effect
is less than k. However, it is far from certain that a monotonic transfor-
mation gives Q = 0.

Two different examples will be given for the 2 x 2 factorial design
with independent cell samples. The basic data of the first one is presented
in table 3. Figure 3 of the appendix shows the curves of the effects, inclu-
ding that between cells.

Table 3. Basic data of example 3
AA1

2
B1 B2 B1 B2

3 5 0 10 15 30

2 15 10 5 10 40

1 5 15 .10 0 30

1

25 25 25 25 100

For equally spaced scale values we get QA = QAB = 0.1500 and
QB = 0.0000. The B effect is an instance of super stability, QB is
constantly zero, and its curve in figure 3 is not apparant as it coincides

'with the horisontal axis. The eigenvalues of A and AB are both 0.1917
and 0.0000, of which the highest ore is associated with the admissible
a space for monotonic transformations. With this restriction the minimal

11
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Q value is 0.0476 for both effects. (Notice from figure 3 thai the A and

AB curves are reflections of each other around a = 0.5.) The sum effect

(between cells), has eigenvalues 0.3000-and 0.0833. Here again the global

maximum comes from the admissible a space but its minimum is 0.2381.

Th.e Q value between cells is quite stable for monotonic transformations,
while that for A and Al is not quite so stable.

We have said that whenever the distributions of different groups are

identical, Q = 0 is a superstable result. However, superstabiliti is ncit

confined to zero effects, as will be shown by the next example. The basic

data for this can be found in table 4, and figure 4 of the appendix illustrates

the functions.

Table 4. Basic data of example 4
Al

B1 B2
A2

B1 B2

3 10 40 10 20 80

2 40 10 10 20 80

1 10 10 40 20 80

7 60 60 60 60 240

For the usual scale (0.0, 0.5, 1.0) we obtain QA = QB = 0.0938 and

0.0000. The eigenvalues are 0.1250 and 0.0000 for all three
QAB
effects. When re .tricting ourselves to monotonic transformations, the

restricted maxima and minima are. 0.,1250 and 0.0313 for A and B, while

those for AB are 0.0313 and 0.0000. However, the remarkable property

of this example is QA F QB F Q-AB
0.1875, irrespective of the scale.

No transformation whatsoever can change the proportion of the total

variance due to differences of the cell means. I hake no idea whether data

which, at least roughly, have this proper\ty are common or not. Notice

that the concept of superstability can be dependent on Q: it is not certain

that an index describes a result as superstable, in spite of the fact that

it has been so described by another index.

There are se"eral conceivable indices suitable for describing ANOVA

results. Besides the proportion already used, we may mention the F- ratio

and different combinations of variance components. As an example of an

alternative index, we take Q = A/ the ratio of the estimated

variance component of factor A to the corresponding component of error,

and apply this index to the first 2 x 2 factorial example.

12



We assume that A and B are both fixed and estimate the components
by` equating the observed mean squares with their expected values.
The index has the form shown by formula 4 with F = (BA - W/96) / 50

and G = W/96. Its lower limit is thus dependent of data (here -1/50),
while the upper limit may be set to infinity. The eigenvali'-s are, for

this example, 0.4786 och -0. 0200: For monotonic tr; dens,
0.1600 4 Q <0.4786. As is seen from figure 5, the curve for this index
bears a close resemblance to the QA curve of figure 3. This may, however,
be a mere coincidence. For instance, if we take the same index but assume

the factors to be random, the ILesulting curve is rather different from
; .

the QA
'curve of figure 3.

Reliability

Determination of a weighted sum of variables with maximal reliability
is by no means a new problem. One of the older methods is presented e.g.
in Lord &Novick (1968, pp. 12-124) and another more general method
is de scribed by Abelson (1960). These methods work with the same form

of Q (see fo'rmula 4) as the method proposed 'here, but the matrices are
not the same. Besides, my method can guarantee a solution within the
class of monotonic transformations and can be used for a single variable.
This is not the ease with the other two methods.

We shall take an example which admits a comparison with.Abelson' s

,method. The example comprised a 'te'st' composed by two binary items,

which is measured on ten persons on two occasions. The basic data are

given in table 5 and a Q function in figure 6.

Table 5. Basic data of example 5
Item 1

Occasion
1-- 2

Item 2
Occasion
1

1 1

2 1 0 1 1

3 1 1 1 1

4 1 1 0 0

Person'5, 1 1 0 0

6' 0

7 0 0 1 0

8 0 0 1 0

9 0 0

10 0 0 0 0

13
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A '1' may be interpreted as a correct answer, a '0' as a wrong' I\

answer. The testhas four possible outcomes: (0,0),(0,1), (1, 0) and (I, 1)

with scale values 0, a l' a
2

and 1, respectively. The restriction to

monotonic transformations will here imply 0 C al' a2
<. 1, since there is no

clear way of internally ranking the outcomes (0, 1) and (1, 0). Table 5

corresponds to a one facto; ANOVA with repeated measures for a iven

scale. In such a design the total sum of squares is split uplrito th ee

sums: for occasions 0, persons P and interaction (plus error) OP, and

the same split is valid for the cross product matrices: T = Bo + Bp +

BOP'
The estimates of variance components relevant to reliability give,

in this case ,'-}" = Bp Bop and G.= Bp + Bop.

The eigenvalues are 0.8383, '0. 6762 and -0. 464 `, none of which

corresponds to the admissible -a space for monotonic transformations.

The common scale (0. 0, 0. 5, 0. 5; 1. 0) 'gives a reliability of 0. 6327.

If we do not differentiate between-the outcomes (0, 1) and (1, 0), this

value can still be intiproved on: the scale (0.0, 0.15, 0.15, 1.0) has

a reliability of 0.7747. (It happens to be the larger eigenvalue for the

Q..function with ;a1 = a2. ) According to Spearman-Brown' s,formula,

this is equal to a doubled test with the common scale.

Abelson' s method distinguighes between (0, 1.) and (1,0) but the

solution is, for this example, 'confined to the line at a2 = 1. It gives

the reliability value 0.6939, Which,corresponds to 1.32 times the length'

of the commonly scaled test. (It seems to me that Abelson's method

coincides with mine when the outcome of the items is reproducible from

the sum score.) However, best °Pail monotonic transformations is

AO. 0, O. 2, 0. 0, 1. 0), generating the value 0.8029 42. 37 times the 1

length of. the common t'est). Finally, it can be said that the situation is

unstable: the mini um value is 0.0875 when (0,1) and (1,0) are separated

and 0.2162 without this separation.
The example presented above can be generalized to more compleX

univariate designs, e. g. those described by Cronbach (1972). 'As

far as I can see this involves no mathematical.novelties: it is only a

matter of correctly choosing the weighted sum; of basic matrices

(from the ANOVA) which define F and G.

Correlations

The usual stability analylls of a squared bivariate correlation involves

14
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a Q index according to formula 5. As we shall see, however, there are,

occasions when a correlation takes the form hitherto d!scussed for Q.

The first example makes use of data from table 1, where we now

also assume the levels to be ordered (according to index numbers).

Figure 7 of the appendix shows the Q function. The eigenvalues are

the'same as for example 1, 0.9079 and 0.0069, with the largest one

coming from the admissible a space for monotonic transformations.

There are nonmonotonic transformations for which Q becomes zero,

but for monotonic transformations the minimal Q value is 0.0476.

The scale (0. 0\, 0.5, 1.0) for both variables gives a value of 0.5173.

This example thus shows a very unstable situation.

Figure 7 also gives some relations between this example -and example

1. The curve denoted P1 is connected to figure 1: the curve of figure 1

shows the height when following P1, of figure 7. In the same manner-

we get P2, the corresponding curve to P1 when independent and dependent

variables change places in example_l. (Only parts of P1 and P2 are

shown in figure 7.)
Suppose that it is desirable to determine the same scale for a number

of variables with equally many categories and to define an average

correlation as the ratio of the average covariance to the average

variance. (The reliability estimate of example 5 is such a correlation.)

We then have a correlation analysis where the form of Q is given by

formula 4. No example of such an analysis is shown here, but we will

instead present data of another correlation problem conformable to

formula 4.
This example comprises 'real' data from a pilot study (n = 44):

The correlation problem concerns the relation between frequency
ef

statements (the number of days per year) and verbal statements for

six different questions. The verbally anchored variables have categories

labelled almost never, se om, sometimes, often and almost always.

The six questions asked r fer to'how often you/ I. watch TV, 2. go to

the pictures, 3. wake up rested, 4. have a headache, 5. are stressed

and 6. feel expectant. Some correlations between frequency statements

and verbal 'statements are given in table 6 for each question.
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Table 6 Some correlations of example 7
common Q maxmin Q

1 0.2921 0.7526 0.7553

'2 0.1464 0.4570 0.5319

3 0.1212 0.7194 0.7447

4 0.0659' 0.6065 0.6268

5 0.0950 0.4007 0.4212

6 0.0729 0.5838 0.6891

It is reasonable, for this example, not to recode the frequency
variables: we regard 'the number of days per year' as a fixed scale

and are only interested in numerically coding the verbal categories
to obtain minimal and maximal squared correlations between frequency
statements and verbal statements. This problem gives a Q index

according to formula 4, with F = s s , js 2 and G = S. Here s is the
vector of covariances between the binary variables and the frequency

variable, which has variance s2, and S is the covariance matrix of the
binary variables. .

As F is positive semidefinite, it is possible to obtain zero correlations
but they do not correspond to scales within the a space of monotonic
transformations. The minimal Q values for this space are all generated
by corner solutions, that is, the worst admissible dichotomizations.
The restricted maximal Q value coincides with the greatest eirr,envalue,

except in questions- 2 and 3, which give the only boundary solutions, but
their maximal Q values are almost the same as their nonzero eigen-
values. The second column of table 6 refers to Q when the verbal scale
has equally spaced values. We see that these "commion Q values are of the

same magnitudes as the corresponding maximal values, perhaps with
the exception of question 6. On the other hand,'-the/ ability to predict
frequency statements from verbal statements is 14 no case very high.

EXTENSIONS

This section contains some rather loose ideas about possible applications

of stability analysis to multivariate statistical methods. I do not know if

there are new numerical problems not encountered in univariate analysis.
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01 course, the multitude of values to determine may in itself raise

co/lc-nines. : will now comment superficially upon principal component

analysis. discrimin-ant analysis. canonical correlation analysis and

!actor analysis
e discuss principal component analysis only by treating the problem

---;-of-finding a weighted variable z c'x'1= c'D'u = t'u with maximal variance.

For instance, for two variables with three categories each, we have

t' = (c1a11, c1, c2a.21, c2). The usual restrictions imply that ai, will

be seperately ranked and that -c'c = 1. However, I imagine that there

will often be more restrictions. To use Joreskog's words, see e.g.

JOreskog (1973), every element of t can be fixed, constrained or free.

Some variables, like the frequency variable of example 7, may be so

well defined that its scale vector is fixed. Another instance of fixed

values is to predetermine c: you have a model about how z should be

drained and investigate whether the best scaling 'reache s a sufficiently

high variance. If you are not satisfied with the resulting variance then

your model is not good under any monotonic transformations. In case

some or all variables have the same number of categories it may be

desirable to let the scale vectors be identical. This is a reasonable

example of constrained values. Under some combination of fixed,

constrained and free elements of t one is now interested in determining

t such that mp.x t'S t (and perhaps also mion max tiSuut) is obtained.
uu

Discriminant analysis is illustrated by finding the best discriminant

function for a one factor design with independently sampled groups.

Let Bid be the crossproduct matrix 1-etween groups for ui and u and

ij be the corresponding matrix for the total group. We further define

= {Bid) and T = {T..}. The Q index can be t'Bt/t'Tt, which correspOnds

to formula 4. The K values of t may be restricted in different ways,

analogous to the case of principle component analysis. To take a very

restricted case, suppose that all x have k+1 categories and that we

want to find a scale common to all x which gives maximal discrimination

for the unweighted sum of the variables. Then c is fixed and D is

constrained, so that there are only k-1 ranked values to determine.

Other designs may also be treated.

In ca- conical correlation analysis we also use a second set of variables.

Let yi, i=1, , q, have mi+1 categories, with scale vector bi and vi

17
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as its binary variables, such that yi = b'ivi. Define Db as a block
diagonal matrix of order Mxq, having,bi on the principal diagonal

(M We further need a weighted sum d'y = d'Db
v = t' v, where

v tv.J. Finally, define the covariance matrices S = CS S =
1 vv uv

1

and S = tS *, of orders MxM, KxM and KxK, respectively.
u.v.j uu u.u.'

(For instance, the general element ,of Suv is the covariance matrix
between u. and v..) If we take Q as the squared correlation between ex

and d'y it can be written as (VaS uvt b) 2At'aSuu tat'bS vvt b) and thus has
the form according to formula 5. Of course, this is also applicable

to multiple correlations, in which case q=1. A's a new example of

restrictions we can mention c = d and a
= Db, provided that p = q and

=k.

1
This is a reasonable constraint if x and y are the same

1

variables, measured on two occasions.
For factor analysis, we are interested in scaling the manifest

variables so that they fit, as well as possible, to a given factor model.

Several goodness-of-fit criteria are conceivable, such as the common
or generalized least squares criterion, a likelihood function or perhaps
the index suggested by Tucker & Lewis (1973). In general, the factor
model is not fully specified, meaning that there are factor parameters
as well as scale values to determine. I imagine that this will imply

an iterative process which 'walks' to and4ro between scale values and
parameters: starting with a set of scales, one estimates the parameters,
which constitute the basis for a new set of scale values, and so on.

If the fit is bad, the model is not compatible with data under any
admissible transformations of the manifest variables, which is quite
a general conclusion.

FINAL REMARKS

The intention of stability analysis is to get knowledge about how
differently you can describe-results due to different scales-.W-e-May

imagine two classes of transformations: R(Q), for which the Q index: of
result is invariant, and R(C), the admissble class of scale transforma-
tions for a certain concept. The word 'admissible' has the following
(loose) meaning: given a definition of a concept, the possible outcomes
of the instrument chosen (to measure this concept) can be' scaled

18
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according to and element in R(C) without fundamental objections as
to a change of the concept. The most common example in educational
research would be the class of linear transformations for R(Q) and
all monotonic transformations for R(C).

Stability analysis is only necess.ary if R(Q) c. R(C), since otherwise
the result, is totally stable. (If R(Q) R(C), there are perhaps better.
stable Q indices.) However, when R(Q) ....:R(C) it is not unusual to
choose a new Q, such that R(Q) R(C). ,Several devices for this
can be found in nonparametric statistics. In my opinion, it is better
to keep the original Q and sharpen the definition of the 'concept, such
that R(Q) R(C) or, if this is not possible, to perform a' stability
analysis. Suppose we have a Q which we regard as a good'tiescription
of data, but with R(Q) ="-----R(C). I cannot see any reason why W should
lose information by choosing a new Q with R(Q) :?_R(C) instead of
performing a stability analysis.

It may be clear from the examples that one is sometimes most
interested in obtaining an extreme value of Q, e.g. a minimal' interaction
or a maximal group differentiation. Discussion of such optimal
scaling for more or less special cases is not rare in research literature.
However, there may be occasions when one wants to report a typical Q
value. This can be defined in several ways but let us take
the expected value. This integral can be difficult to evaluate but type I
simulations discussed earlier give information,about the expected value.
It is reasonable to use the arithmetic mean of the generated distribution.

Of the examples dis-aissed above, such simulations have been performed
for examples 1, 3 and 7 with 200 repetitions. One can, for instance, ask
if Q from the scale with equally spaced values is typical. We answer
by reporting the standardized Q value: example 1 gives 0.11, example
3 gives 0.14 for A, 0.13 for AB and 1.29 for between cells (the value of
B is not defined due to supers'abilitty) and example 7 has values between
0.51 and 1.27. ,The answer is consequently not an unequivocalfiyes or no.
Moreover, soreover,when a measurement is made on different population and/or
the data are treated with different methods, stability, minimal Q, typical
Q or maximal Q may vary. In conformity with a test having different
reliabilities for different situations, it can also have different scales

for different situations, prcvided that R(Q)_.R(C).

19
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For complex methods, it may be difficult to construct an effective

algorithm for scanning MC) in order to,find special Q values. An

alternative is to resort to selected transformations and investigate

the variation of Q among these. I have done this for factor analysis,
Larsson (1974), and found the results robust to (some) monotonic

transformations. However, this is not a satisfactory approach and one

must -at least try to use more general methods, like the one proposed

in this report.
Binary coding is not the only alternative here It seems to me that

one can also use polynomials. For an arbitrary, monotonic scoring, w,
we represent x as a polynomial of w of degree k. Then (w, w2,

, wk)

corresponds to u and the polynomial coefficients correspond to a . But

the formulation of the monotonic restriction is probably more complicated:

instead of only ranking the elements of a , you now have to rank weighted

sums of the coefficients.
When k is large the use of a polynomial may be advantageous. For

instance, a truly continuous variable implies k = n-1, an 'impossible'
number of categories to work with. The problem is to reduce the number

by putting together categories with lowest possible distortion of data.

For a polynomial, the 'obvious' way is to reduce its degree but I do

not knoW how to handle the binary variables.
Provided that the optimization routines turn out to be dependable,

it is my intention to investigate the stability of some univariate statistical

methods on various data sets. It may be interesting to know whether

stability varies with e. g. different educational research-- areas, different

statistical methods and different numbers of categories. The investigation

will give access to programs designed to determine minimal and maximal

Q (and perhaps typical Qj for some statistical methods. It seems to me

to be more sensible to report minimal and maximal Q, perhaps along

with Q for equally spaced scale values, than only the latter. Suppose,

that the latter Q is 0.25 in two different cases (poissible range of Q:

0 < Q < 1). Suppose further that 0.00 < Q < 0.75 in the first case and

0.20 < Q < 0.30 in the second case. I do not think that the stability

information will cause one to judge the cases identically, although Q for

equally spaced scale values is the same in both cases.
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Figure I. The Q index of example I
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Figure 2. The Q indices of example 2
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,Figure 3. The Q indices of example 3
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Figure 4, The Q indices of example 4
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Figure 5. Alte native Q index

for factor A of example 3
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